3.2.76 \(\int \frac {\text {arcsinh}(a x)}{(c+a^2 c x^2)^{7/2}} \, dx\) [176]

3.2.76.1 Optimal result
3.2.76.2 Mathematica [A] (verified)
3.2.76.3 Rubi [A] (verified)
3.2.76.4 Maple [B] (verified)
3.2.76.5 Fricas [F]
3.2.76.6 Sympy [F]
3.2.76.7 Maxima [A] (verification not implemented)
3.2.76.8 Giac [A] (verification not implemented)
3.2.76.9 Mupad [F(-1)]

3.2.76.1 Optimal result

Integrand size = 19, antiderivative size = 200 \[ \int \frac {\text {arcsinh}(a x)}{\left (c+a^2 c x^2\right )^{7/2}} \, dx=\frac {1}{20 a c^3 \left (1+a^2 x^2\right )^{3/2} \sqrt {c+a^2 c x^2}}+\frac {2}{15 a c^3 \sqrt {1+a^2 x^2} \sqrt {c+a^2 c x^2}}+\frac {x \text {arcsinh}(a x)}{5 c \left (c+a^2 c x^2\right )^{5/2}}+\frac {4 x \text {arcsinh}(a x)}{15 c^2 \left (c+a^2 c x^2\right )^{3/2}}+\frac {8 x \text {arcsinh}(a x)}{15 c^3 \sqrt {c+a^2 c x^2}}-\frac {4 \sqrt {1+a^2 x^2} \log \left (1+a^2 x^2\right )}{15 a c^3 \sqrt {c+a^2 c x^2}} \]

output
1/5*x*arcsinh(a*x)/c/(a^2*c*x^2+c)^(5/2)+4/15*x*arcsinh(a*x)/c^2/(a^2*c*x^ 
2+c)^(3/2)+1/20/a/c^3/(a^2*x^2+1)^(3/2)/(a^2*c*x^2+c)^(1/2)+8/15*x*arcsinh 
(a*x)/c^3/(a^2*c*x^2+c)^(1/2)+2/15/a/c^3/(a^2*x^2+1)^(1/2)/(a^2*c*x^2+c)^( 
1/2)-4/15*ln(a^2*x^2+1)*(a^2*x^2+1)^(1/2)/a/c^3/(a^2*c*x^2+c)^(1/2)
 
3.2.76.2 Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.60 \[ \int \frac {\text {arcsinh}(a x)}{\left (c+a^2 c x^2\right )^{7/2}} \, dx=\frac {\sqrt {c+a^2 c x^2} \left (4 a x \sqrt {1+a^2 x^2} \left (15+20 a^2 x^2+8 a^4 x^4\right ) \text {arcsinh}(a x)-\left (1+a^2 x^2\right ) \left (-11-8 a^2 x^2+16 \left (1+a^2 x^2\right )^2 \log \left (1+a^2 x^2\right )\right )\right )}{60 a c^4 \left (1+a^2 x^2\right )^{7/2}} \]

input
Integrate[ArcSinh[a*x]/(c + a^2*c*x^2)^(7/2),x]
 
output
(Sqrt[c + a^2*c*x^2]*(4*a*x*Sqrt[1 + a^2*x^2]*(15 + 20*a^2*x^2 + 8*a^4*x^4 
)*ArcSinh[a*x] - (1 + a^2*x^2)*(-11 - 8*a^2*x^2 + 16*(1 + a^2*x^2)^2*Log[1 
 + a^2*x^2])))/(60*a*c^4*(1 + a^2*x^2)^(7/2))
 
3.2.76.3 Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 213, normalized size of antiderivative = 1.06, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.316, Rules used = {6203, 241, 6203, 241, 6202, 240}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\text {arcsinh}(a x)}{\left (a^2 c x^2+c\right )^{7/2}} \, dx\)

\(\Big \downarrow \) 6203

\(\displaystyle \frac {4 \int \frac {\text {arcsinh}(a x)}{\left (a^2 c x^2+c\right )^{5/2}}dx}{5 c}-\frac {a \sqrt {a^2 x^2+1} \int \frac {x}{\left (a^2 x^2+1\right )^3}dx}{5 c^3 \sqrt {a^2 c x^2+c}}+\frac {x \text {arcsinh}(a x)}{5 c \left (a^2 c x^2+c\right )^{5/2}}\)

\(\Big \downarrow \) 241

\(\displaystyle \frac {4 \int \frac {\text {arcsinh}(a x)}{\left (a^2 c x^2+c\right )^{5/2}}dx}{5 c}+\frac {x \text {arcsinh}(a x)}{5 c \left (a^2 c x^2+c\right )^{5/2}}+\frac {1}{20 a c^3 \left (a^2 x^2+1\right )^{3/2} \sqrt {a^2 c x^2+c}}\)

\(\Big \downarrow \) 6203

\(\displaystyle \frac {4 \left (\frac {2 \int \frac {\text {arcsinh}(a x)}{\left (a^2 c x^2+c\right )^{3/2}}dx}{3 c}-\frac {a \sqrt {a^2 x^2+1} \int \frac {x}{\left (a^2 x^2+1\right )^2}dx}{3 c^2 \sqrt {a^2 c x^2+c}}+\frac {x \text {arcsinh}(a x)}{3 c \left (a^2 c x^2+c\right )^{3/2}}\right )}{5 c}+\frac {x \text {arcsinh}(a x)}{5 c \left (a^2 c x^2+c\right )^{5/2}}+\frac {1}{20 a c^3 \left (a^2 x^2+1\right )^{3/2} \sqrt {a^2 c x^2+c}}\)

\(\Big \downarrow \) 241

\(\displaystyle \frac {4 \left (\frac {2 \int \frac {\text {arcsinh}(a x)}{\left (a^2 c x^2+c\right )^{3/2}}dx}{3 c}+\frac {x \text {arcsinh}(a x)}{3 c \left (a^2 c x^2+c\right )^{3/2}}+\frac {1}{6 a c^2 \sqrt {a^2 x^2+1} \sqrt {a^2 c x^2+c}}\right )}{5 c}+\frac {x \text {arcsinh}(a x)}{5 c \left (a^2 c x^2+c\right )^{5/2}}+\frac {1}{20 a c^3 \left (a^2 x^2+1\right )^{3/2} \sqrt {a^2 c x^2+c}}\)

\(\Big \downarrow \) 6202

\(\displaystyle \frac {4 \left (\frac {2 \left (\frac {x \text {arcsinh}(a x)}{c \sqrt {a^2 c x^2+c}}-\frac {a \sqrt {a^2 x^2+1} \int \frac {x}{a^2 x^2+1}dx}{c \sqrt {a^2 c x^2+c}}\right )}{3 c}+\frac {x \text {arcsinh}(a x)}{3 c \left (a^2 c x^2+c\right )^{3/2}}+\frac {1}{6 a c^2 \sqrt {a^2 x^2+1} \sqrt {a^2 c x^2+c}}\right )}{5 c}+\frac {x \text {arcsinh}(a x)}{5 c \left (a^2 c x^2+c\right )^{5/2}}+\frac {1}{20 a c^3 \left (a^2 x^2+1\right )^{3/2} \sqrt {a^2 c x^2+c}}\)

\(\Big \downarrow \) 240

\(\displaystyle \frac {4 \left (\frac {x \text {arcsinh}(a x)}{3 c \left (a^2 c x^2+c\right )^{3/2}}+\frac {2 \left (\frac {x \text {arcsinh}(a x)}{c \sqrt {a^2 c x^2+c}}-\frac {\sqrt {a^2 x^2+1} \log \left (a^2 x^2+1\right )}{2 a c \sqrt {a^2 c x^2+c}}\right )}{3 c}+\frac {1}{6 a c^2 \sqrt {a^2 x^2+1} \sqrt {a^2 c x^2+c}}\right )}{5 c}+\frac {x \text {arcsinh}(a x)}{5 c \left (a^2 c x^2+c\right )^{5/2}}+\frac {1}{20 a c^3 \left (a^2 x^2+1\right )^{3/2} \sqrt {a^2 c x^2+c}}\)

input
Int[ArcSinh[a*x]/(c + a^2*c*x^2)^(7/2),x]
 
output
1/(20*a*c^3*(1 + a^2*x^2)^(3/2)*Sqrt[c + a^2*c*x^2]) + (x*ArcSinh[a*x])/(5 
*c*(c + a^2*c*x^2)^(5/2)) + (4*(1/(6*a*c^2*Sqrt[1 + a^2*x^2]*Sqrt[c + a^2* 
c*x^2]) + (x*ArcSinh[a*x])/(3*c*(c + a^2*c*x^2)^(3/2)) + (2*((x*ArcSinh[a* 
x])/(c*Sqrt[c + a^2*c*x^2]) - (Sqrt[1 + a^2*x^2]*Log[1 + a^2*x^2])/(2*a*c* 
Sqrt[c + a^2*c*x^2])))/(3*c)))/(5*c)
 

3.2.76.3.1 Defintions of rubi rules used

rule 240
Int[(x_)/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[Log[RemoveContent[a + b*x 
^2, x]]/(2*b), x] /; FreeQ[{a, b}, x]
 

rule 241
Int[(x_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(a + b*x^2)^(p + 1)/ 
(2*b*(p + 1)), x] /; FreeQ[{a, b, p}, x] && NeQ[p, -1]
 

rule 6202
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2)^(3/2), 
x_Symbol] :> Simp[x*((a + b*ArcSinh[c*x])^n/(d*Sqrt[d + e*x^2])), x] - Simp 
[b*c*(n/d)*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]   Int[x*((a + b*ArcSinh[ 
c*x])^(n - 1)/(1 + c^2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, 
 c^2*d] && GtQ[n, 0]
 

rule 6203
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_), x 
_Symbol] :> Simp[(-x)*(d + e*x^2)^(p + 1)*((a + b*ArcSinh[c*x])^n/(2*d*(p + 
 1))), x] + (Simp[(2*p + 3)/(2*d*(p + 1))   Int[(d + e*x^2)^(p + 1)*(a + b* 
ArcSinh[c*x])^n, x], x] + Simp[b*c*(n/(2*(p + 1)))*Simp[(d + e*x^2)^p/(1 + 
c^2*x^2)^p]   Int[x*(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x 
], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && LtQ[p, 
 -1] && NeQ[p, -3/2]
 
3.2.76.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(362\) vs. \(2(170)=340\).

Time = 0.18 (sec) , antiderivative size = 363, normalized size of antiderivative = 1.82

method result size
default \(\frac {16 \sqrt {c \left (a^{2} x^{2}+1\right )}\, \operatorname {arcsinh}\left (a x \right )}{15 \sqrt {a^{2} x^{2}+1}\, a \,c^{4}}+\frac {\sqrt {c \left (a^{2} x^{2}+1\right )}\, \left (8 a^{5} x^{5}-8 a^{4} x^{4} \sqrt {a^{2} x^{2}+1}+20 a^{3} x^{3}-16 a^{2} x^{2} \sqrt {a^{2} x^{2}+1}+15 a x -8 \sqrt {a^{2} x^{2}+1}\right ) \left (-64 a^{8} x^{8}-64 \sqrt {a^{2} x^{2}+1}\, a^{7} x^{7}-280 a^{6} x^{6}-248 x^{5} a^{5} \sqrt {a^{2} x^{2}+1}+160 a^{4} x^{4} \operatorname {arcsinh}\left (a x \right )-456 a^{4} x^{4}-340 a^{3} x^{3} \sqrt {a^{2} x^{2}+1}+380 a^{2} x^{2} \operatorname {arcsinh}\left (a x \right )-328 a^{2} x^{2}-165 a x \sqrt {a^{2} x^{2}+1}+256 \,\operatorname {arcsinh}\left (a x \right )-88\right )}{60 \left (40 a^{10} x^{10}+215 a^{8} x^{8}+469 a^{6} x^{6}+517 a^{4} x^{4}+287 a^{2} x^{2}+64\right ) a \,c^{4}}-\frac {8 \sqrt {c \left (a^{2} x^{2}+1\right )}\, \ln \left (1+\left (a x +\sqrt {a^{2} x^{2}+1}\right )^{2}\right )}{15 \sqrt {a^{2} x^{2}+1}\, a \,c^{4}}\) \(363\)

input
int(arcsinh(a*x)/(a^2*c*x^2+c)^(7/2),x,method=_RETURNVERBOSE)
 
output
16/15*(c*(a^2*x^2+1))^(1/2)/(a^2*x^2+1)^(1/2)/a/c^4*arcsinh(a*x)+1/60*(c*( 
a^2*x^2+1))^(1/2)*(8*a^5*x^5-8*a^4*x^4*(a^2*x^2+1)^(1/2)+20*a^3*x^3-16*a^2 
*x^2*(a^2*x^2+1)^(1/2)+15*a*x-8*(a^2*x^2+1)^(1/2))*(-64*a^8*x^8-64*(a^2*x^ 
2+1)^(1/2)*a^7*x^7-280*a^6*x^6-248*x^5*a^5*(a^2*x^2+1)^(1/2)+160*a^4*x^4*a 
rcsinh(a*x)-456*a^4*x^4-340*a^3*x^3*(a^2*x^2+1)^(1/2)+380*a^2*x^2*arcsinh( 
a*x)-328*a^2*x^2-165*a*x*(a^2*x^2+1)^(1/2)+256*arcsinh(a*x)-88)/(40*a^10*x 
^10+215*a^8*x^8+469*a^6*x^6+517*a^4*x^4+287*a^2*x^2+64)/a/c^4-8/15*(c*(a^2 
*x^2+1))^(1/2)/(a^2*x^2+1)^(1/2)/a/c^4*ln(1+(a*x+(a^2*x^2+1)^(1/2))^2)
 
3.2.76.5 Fricas [F]

\[ \int \frac {\text {arcsinh}(a x)}{\left (c+a^2 c x^2\right )^{7/2}} \, dx=\int { \frac {\operatorname {arsinh}\left (a x\right )}{{\left (a^{2} c x^{2} + c\right )}^{\frac {7}{2}}} \,d x } \]

input
integrate(arcsinh(a*x)/(a^2*c*x^2+c)^(7/2),x, algorithm="fricas")
 
output
integral(sqrt(a^2*c*x^2 + c)*arcsinh(a*x)/(a^8*c^4*x^8 + 4*a^6*c^4*x^6 + 6 
*a^4*c^4*x^4 + 4*a^2*c^4*x^2 + c^4), x)
 
3.2.76.6 Sympy [F]

\[ \int \frac {\text {arcsinh}(a x)}{\left (c+a^2 c x^2\right )^{7/2}} \, dx=\int \frac {\operatorname {asinh}{\left (a x \right )}}{\left (c \left (a^{2} x^{2} + 1\right )\right )^{\frac {7}{2}}}\, dx \]

input
integrate(asinh(a*x)/(a**2*c*x**2+c)**(7/2),x)
 
output
Integral(asinh(a*x)/(c*(a**2*x**2 + 1))**(7/2), x)
 
3.2.76.7 Maxima [A] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 143, normalized size of antiderivative = 0.72 \[ \int \frac {\text {arcsinh}(a x)}{\left (c+a^2 c x^2\right )^{7/2}} \, dx=\frac {1}{60} \, a {\left (\frac {3}{{\left (a^{6} c^{\frac {5}{2}} x^{4} + 2 \, a^{4} c^{\frac {5}{2}} x^{2} + a^{2} c^{\frac {5}{2}}\right )} c} + \frac {8}{{\left (a^{4} c^{\frac {3}{2}} x^{2} + a^{2} c^{\frac {3}{2}}\right )} c^{2}} - \frac {16 \, \log \left (x^{2} + \frac {1}{a^{2}}\right )}{a^{2} c^{\frac {7}{2}}}\right )} + \frac {1}{15} \, {\left (\frac {8 \, x}{\sqrt {a^{2} c x^{2} + c} c^{3}} + \frac {4 \, x}{{\left (a^{2} c x^{2} + c\right )}^{\frac {3}{2}} c^{2}} + \frac {3 \, x}{{\left (a^{2} c x^{2} + c\right )}^{\frac {5}{2}} c}\right )} \operatorname {arsinh}\left (a x\right ) \]

input
integrate(arcsinh(a*x)/(a^2*c*x^2+c)^(7/2),x, algorithm="maxima")
 
output
1/60*a*(3/((a^6*c^(5/2)*x^4 + 2*a^4*c^(5/2)*x^2 + a^2*c^(5/2))*c) + 8/((a^ 
4*c^(3/2)*x^2 + a^2*c^(3/2))*c^2) - 16*log(x^2 + 1/a^2)/(a^2*c^(7/2))) + 1 
/15*(8*x/(sqrt(a^2*c*x^2 + c)*c^3) + 4*x/((a^2*c*x^2 + c)^(3/2)*c^2) + 3*x 
/((a^2*c*x^2 + c)^(5/2)*c))*arcsinh(a*x)
 
3.2.76.8 Giac [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.62 \[ \int \frac {\text {arcsinh}(a x)}{\left (c+a^2 c x^2\right )^{7/2}} \, dx=-\frac {1}{60} \, \sqrt {c} {\left (\frac {16 \, \log \left (a^{2} x^{2} + 1\right )}{a c^{4}} - \frac {24 \, a^{4} x^{4} + 56 \, a^{2} x^{2} + 35}{{\left (a^{2} x^{2} + 1\right )}^{2} a c^{4}}\right )} + \frac {{\left (4 \, {\left (\frac {2 \, a^{4} x^{2}}{c} + \frac {5 \, a^{2}}{c}\right )} x^{2} + \frac {15}{c}\right )} x \log \left (a x + \sqrt {a^{2} x^{2} + 1}\right )}{15 \, {\left (a^{2} c x^{2} + c\right )}^{\frac {5}{2}}} \]

input
integrate(arcsinh(a*x)/(a^2*c*x^2+c)^(7/2),x, algorithm="giac")
 
output
-1/60*sqrt(c)*(16*log(a^2*x^2 + 1)/(a*c^4) - (24*a^4*x^4 + 56*a^2*x^2 + 35 
)/((a^2*x^2 + 1)^2*a*c^4)) + 1/15*(4*(2*a^4*x^2/c + 5*a^2/c)*x^2 + 15/c)*x 
*log(a*x + sqrt(a^2*x^2 + 1))/(a^2*c*x^2 + c)^(5/2)
 
3.2.76.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\text {arcsinh}(a x)}{\left (c+a^2 c x^2\right )^{7/2}} \, dx=\int \frac {\mathrm {asinh}\left (a\,x\right )}{{\left (c\,a^2\,x^2+c\right )}^{7/2}} \,d x \]

input
int(asinh(a*x)/(c + a^2*c*x^2)^(7/2),x)
 
output
int(asinh(a*x)/(c + a^2*c*x^2)^(7/2), x)